Alavi
 21st Century Schools

$$
\begin{aligned}
& \text { Q A A } \\
& \text { MATHEMATICS }
\end{aligned}
$$

chapter

4.1. Exploring volume

Let's investigate.

How could you find out how much space there
 is inside this shoe box?

The @mount of space inside the box can be measured by ifs volume.

What is volume?

The amount of space that is inside a containep.

Volume can be measured only for 3D (3 dimensional) shapes.

What is volume? Volume is measured in cm^{3} (=cubic centimetre).

How to measure volume:

container

measure

How to measure volume:

Fill in the container with identical(similar) items then count them.

Taking some identical cubes/sticks to the class.
Putting them in a box and then saying the following target language:
This box has got a volume of (number) cubes.
This box has got a volume of (number) sticks.
Doing this with different objects and boxes and asking
Ss to repeat the Target language after you.

This box has got a volume of (about) (number) apples.
This box has got a volume of (about) (number) bananas.
Tell them (about) is used because the items do NOT fill the box completely.

How to measure volume:

using cubic centimetre cinn

1*1*1=1 The volume of this shape is $1 \mathrm{~cm}^{3}$

volume $=$ height length width

volume $=$ height length width

cube

This box holds 2 layers of cubes.
There are 2 rows of 4 cubes, or 8 cubes in each layer.
So, the volume of this box is 16 cubic centimetres, or $16 \mathrm{~cm}^{3}$.

$\mathrm{V}=1 * 1 * 1=1 \mathrm{~cm}^{3}$

$$
\mathfrak{1 6} \cdot \mathbb{1} \mathrm{cm}^{3}=\mathbb{1} \sigma \mathrm{cm}^{3}
$$

Volume is the amount of s..

 that is inside a Co.
Volume can be measured only for ... shapes.

Volume is measured in

Which shape's volume is : $12 \mathrm{~cm}^{3}$
$15 \mathrm{~cm}^{3}$
$27 \mathrm{~cm}^{3}$

Write down the volume of each of these shapes by working out the number of cubes.

1. Make each object with centimetre cubes.

Find the volume of each object.
Order the objects from least to greatest volume.
a)

b)

c)

d)

e)

f)

(i)
(iii)

(iv)

(vi)

